Remarkable Difference between the Kinetic Parameters of a Selective Catalytic Reduction of NO by Ethene on a Copper Ion-Exchanged MFI Zeolite and Al₂O₃

Hiroshi Takeda and Masakazu Iwamoto*

Catalysis Research Center, Hokkaido University, Sapporo 060

(Received March 11, 1996)

The kinetic parameters have been determined in reaction systems of NO+O₂+C₂H₄, NO₂+O₂+C₂H₄, NO+O₂, and O₂+C₂H₄ over a copper ion-exchanged MFI zeolite (Cu-MFI) and Al₂O₃. The rate equations for the N₂ formation in the NO+O₂+C₂H₄ system on Cu-MFI (553—593 K) and Al₂O₃ (673—773 K) were expressed by $r_{\rm N_2}$ = $kP_{\rm NO}^{2.0}P_{\rm O_2}^{0.6}P_{\rm C_2H_4}^{-1.0}$ exp (-168000/RT) and $r_{\rm N_2}$ = $kP_{\rm NO}^{1.1}P_{\rm O_2}^{0.5}P_{\rm C_2H_4}^{0.1}$ exp (-294000/RT), respectively. The significant difference between the equations reveals that the reaction mechanisms or rate-determining steps on Cu-MFI and Al₂O₃ greatly differ. In addition, the rate equations for N₂ and CO₂ production were the same on Cu-MFI, while they were different on Al₂O₃. The reaction mechanism is discussed based on the equations.

Many catalysts have been reported to be active for the selective catalytic reduction of NO by hydrocarbons in an oxidizing atmosphere (SCR-HC). 1,2) Among them, a copper ion-exchanged MFI zeolite (Cu-MFI) and Al₂O₃ are typical catalysts for the reaction as a metal ion-exchanged zeolite catalyst and a solid acid catalyst;²⁾ the former shows high catalytic activity and moderate selectivity to N2 formation at 523—673 K, while the later is moderately active and highly selective. On the Cu-MFI system, three kinds of reaction mechanisms have previously been suggested: a selective reduction of NO by active surface intermediates,3-6) oxidation of NO to NO2 by O2 and a subsequent reaction of NO2 with hydrocarbons to give N₂, 7) and decomposition of NO to N₂ and surface oxygen species and a reaction of the resulting oxygen adsorbates with hydrocarbons.89 Very recently, it has also been reported that the NO₂ species on the surface^{9,10)} or in the gas phase¹¹⁾ reacts with hydrocarbons to give an active intermediate for the selective reduction. This suggestion is a combination of the first and second mechanisms previously reported. On the other hand, the second mechanism has been preferentially proposed on the Al₂O₃ system.⁶⁾ Thus, the reaction mechanism has been extensively discussed.

In this study, the kinetic parameters of the SCR-HC on Cu-MFI and Al_2O_3 were systematically studied to clarify the difference between the reaction mechanisms on Cu-MFI and Al_2O_3 . Several papers have already reported on the kinetics of the SCR-HC on various catalysts. ^{4,10,12)} The results, however, are insufficient to discuss the reaction mechanism on Cu-MFI or Al_2O_3 , since they were obtained at high conversion levels of NO_x and hydrocarbons, the concentrations of reactants were much higher than those in a practical system, or the activities of the catalysts employed were much lower than those of Cu-MFI and Al_2O_3 . The present study was carried out at the conversion levels of reactants below 10%

and at 1000 ppm of NO.

Experimental

The Cu-MFI catalyst was prepared by the same method as that reported previously.⁵⁾ The SiO₂/Al₂O₃ molar ratio and the exchange level of the Cu²⁺ ion were 23.3 and 103%, respectively. Al₂O₃ (JRC-ALO-4) was obtained from the Catalysis Society of Japan. All of the kinetic parameters were evaluated using a fixed-bed flow reactor. The reactants and products were analyzed by a gas chromatograph (TCD) with a molecular sieve 5A column for N₂ and CO and a Porapak Q column for N₂O, CO₂, and C₂H₄. NO_x (NO and NO₂) was analyzed by a chemiliminescence NO_x analyzer. The concentrations of the reactants were changed in the range 0— 1600 ppm for NO (NO₂), 1.5—3.0% for O₂, and 0—1600 ppm for C₂H₄ (helium balance). The total flow rate was 150—300 cm³ min⁻¹. The catalyst weight was 0.005—0.500 g. Unless otherwise stated, the standard reaction conditions were $P_{NO}=1000$ ppm, $P_{\text{O}_2}=2.0\%$, $P_{\text{C}_2\text{H}_4}=1000$ ppm, total flow rate=300 cm³ min⁻¹. and catalyst weight=0.015 g. The conversions of the reactants were less than 10% under the present conditions.

Results and Discussion

Since it is well known that NO₂ might be formed in a gaseous mixture of NO and O₂,¹³⁾ the effect of a mixing chamber (45 cm³) of the reactants on the kinetics measurement was examined first. When NO, O₂, and C₂H₄ were mixed in the mixer and then introduced into the reactor with the Cu-MFI catalyst, N₂ formation was observed above 503 K under the standard reaction condition. Without the mixer the reaction was detected only above 533 K. One of the authors has already reported that the reaction of NO₂+O₂+C₂H₄ system was observed at a lower temperature than that of NO+O₂+C₂H₄.¹⁾ The observations indicate that there is a formation of NO₂ in the mixer and the resulting NO₂ affects the kinetics of the NO+O₂+C₂H₄ reaction. Therefore the

mixer was not used here, and the respective reactants were mixed just before the reactor. Without the mixer there is the possibility that mixing of the reactants is insufficient. At present, however, it is very difficult for us to verify the status of mixing; a measurement under the formation of a smaller amount of NO_2 would be better for studying the kinetics because most of NO_x in real exhausts is well known to be in the form of NO_x .

Typical examples of kinetics measurements in the $NO+O_2+C_2H_4$ system on Cu-MFI are shown in Figs. 1 and 2. The conversion of NO to N_2 is plotted as a function of the reaction temperature in Fig. 1A. Arrhenius plots of the N_2 formation rate (r_{N_2}) are shown in Fig. 1B. It is clear that when the conversion levels of NO to N_2 became 20% or greater the Arrhenius plots for N_2 formation strayed from the linear correlation line. The activation energy for N_2 formation on Cu-MFI was evaluated to be 168 kJ mol⁻¹. Figure 2 shows ln-ln plots of the rate of N_2 formation against the

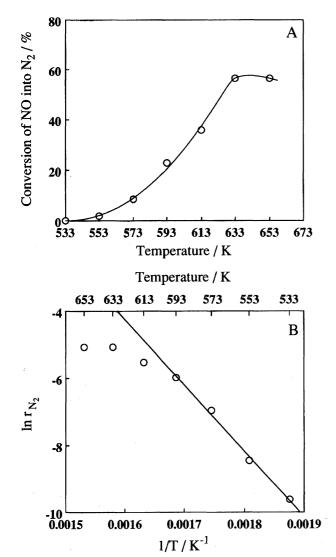


Fig. 1. Temperature dependence of conversion of NO into N_2 in the NO+O₂+C₂H₄ reaction system on Cu-MFI (A) and the Arrhenius plots (B). NO 1000 ppm, O₂ 2.0%, C₂H₄ 1000 ppm, catalyst weight 0.015 g total flow rate 300 cm³ min⁻¹.

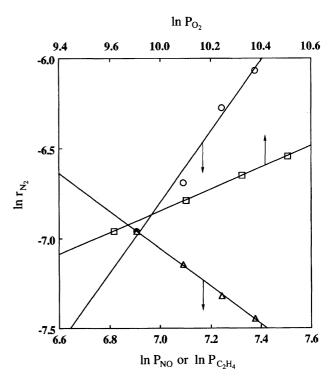


Fig. 2. Dependence of the N_2 formation rate in the $NO+O_2+C_2H_4$ reaction system on Cu-MFI on the partial pressures of reactants. \bigcirc , NO 1000—1600 ppm; \square , O_2 1.5—3.0%; \triangle , C_2H_4 1000—1600 ppm; Standard condition, NO 1000 ppm, O_2 2.0%, C_2H_4 1000 ppm, catalyst weight 0.015 g, total flow rate 300 cm³ min⁻¹.

partial pressure of NO, O₂, or C₂H₄ ($P_{\text{NO,O_2,or C_2H_4}}$) in the NO+O₂+C₂H₄ reaction on Cu-MFI. We could obtain linear correlations within the present experimental conditions. The reaction orders with respect to NO, O₂, and C₂H₄ (α , β , and γ) for the N₂ formation were 2.0, 0.6, and -1.0, respectively.

It would be worthy to note that the mass balance of carbon and nitrogen before and after the reaction was 0.95—1.01 and 0.96—0.99, respectively in all of the experiments. It has been reported that HCN and HNCO were formed as byproducts during the NO+O₂+C₂H₄ reaction on several catalysts. ¹⁴⁾ Although the byproducts were not analyzed in the present experiments, the very good carbon and nitrogen balances indicate a negligible formation of the byproducts.

The kinetic parameters observed are summarized in Table 1. We wish to discuss the kinetics of the SCR-HC on CuMFI. The rate equations for N_2 and CO_2 formations in the $NO+O_2+C_2H_4$ reaction were as follows:

$$r_{\rm N_2} = k P_{\rm NO}^{2.0} P_{\rm O_2}^{0.6} P_{\rm C_2 H_4}^{-1.0} \exp\left(-168000/RT\right) \tag{1}$$

and

$$r_{\text{CO}_2} = k P_{\text{NO}}^{2.0} P_{\text{O}_2}^{0.7} P_{\text{C}_2 \text{H}_4}^{-1.0} \exp\left(-175000/RT\right).$$
 (2)

The kinetic orders and activation energies in both equations were very similar, which suggests that N_2 and CO_2 would be produced through the same rate-determining step in the $NO+O_2+C_2H_4$ system. It should be noted that the value of α for N_2 formation in the $NO+O_2+C_2H_4$ system was 2.0, probably suggesting that N_2 was formed in the reaction of

Catalyst	Reaction system	Temp/ K	Product	Kinetic parameters ^{b)}			
				α	β	γ	$E_{\rm a}^{\rm c)}$
Cu-MFI	$NO+O_2+C_2H_4^{d)}$	553—593	N ₂	2.0	0.6	-1.0	168
			N_2O	0.8	-0.1	-0.6	86
			CO_2	2.0	0.7	-1.0	175
			CO				
	$NO_2+O_2+C_2H_4^{d)}$	563—613	N_2	1.0	0.0	-1.0	105
			N_2O	0.0	0.0	-0.1	152
			CO_2	1.1	0.2	-1.0	144
			CO	1.0	0.0	-1.0	69
	$NO+O_2^{e)}$	473—573	NO_2	1.0	0.0		36
	$O_2 + C_2 H_4^{f)}$	523—593	CO_2	_	0.5	0.1	247
Al ₂ O ₃	$NO+O_2+C_2H_4^{d)}$	673—733	N_2	1.1	0.5	0.1	294
			N_2O	1.0	0.1	0.1	236
			CO_2	0.2	0.7	0.0	316
			CO	0.1	0.6	0.0	210
	$NO_2+O_2+C_2H_4^{d)}$	653—713	N_2	1.1	0.0	0.1	272
			N_2O		_		
			CO_2	1.1	0.1	0.1	293
			CO	0.1	0.7	0.1	184
	$NO+O_2^{g)}$	623—773	NO_2	1.0	0.0		11
	$O_2 + C_2 H_4^{f)}$	753—813	CO ₂		0.5	0.0	268

Table 1. Kinetic Parameters of Selective Reduction of NO by Ethene over Cu-MFI and Al₂O₃ Catalysts^{a)}

a) Standard reaction condition, NO_x 1000 ppm, O₂ 2.0%, C₂H₄ 1000 ppm, catalyst weight 0.015 g, total flow rate 300 cm³ min⁻¹. The symbol "—" indicates that the value could not be evaluated. b) $r = kP_{NO_X}^{\alpha}P_{O_2}^{\beta}P_{C_2H_4}^{\gamma}\exp(-E_a/RT)$, mol g-cat⁻¹min⁻¹. c) Activation energy, kJ mol⁻¹. d) NO_x 800—1600 ppm, O₂ 1.5—3.0%, C₂H₄ 1000—1600 ppm. e) Catalyst weight 0.005 g, NO 1000—1600 ppm, O₂ 1.5—3.0%. f) O₂ 1.5—3.0%, C₂H₄ 1000—1600 ppm. g) Catalyst weight 0.101 g, total flow rate 150 cm³ min⁻¹, NO 1000—1600 ppm, O₂ 1.5—3.0%.

the nitrogen-containing compounds with NO_x. In fact, it was reported that N₂ was formed in the reaction of isocyanate species with NO_x¹⁵⁾ or that nitrogen-containing compounds such as CH₃NO₂ and C₂H₅NO₂ were active for the reaction with the mixture of NO+O₂ to give N₂ selectively.⁵⁾

The value of β for N₂ formation in the NO+O₂+C₂H₄ system was 0.6, indicating that the higher pressure of O₂ accelerates the NO reduction to N₂. Li and Hall¹⁶⁾ reported that the rate equation for NO decomposition on Cu-MFI is

$$r_{N_2} = kP_{NO}^{0.9 - -1.1}P_{O_2}^{-0.4 - -0.2} \exp(-71000 - 121000/RT).$$
 (3)

The reaction orders of NO and O_2 for NO decomposition are quite different from those of the NO+ O_2 + C_2 H₄ reaction. The rate-determining step in the selective reduction of NO by hydrocarbons would not include the catalytic decomposition processes of NO.

Table 1 clearly shows the great difference between the kinetic parameters for the N_2 and N_2O formations in the $NO+O_2+C_2H_4$ system on Cu-MFI. It has already been reported by Li and Armor¹⁷⁾ that the decomposition of N_2O to give N_2 is well catalyzed on Cu-MFI; therefore, if N_2 was mainly generated through the N_2O decomposition in the $NO+O_2+C_2H_4$ system, the kinetic parameters of N_2 and N_2O formations should be the same. The difference in the rate

equations suggests that the pathway of the N_2O formation is distinct from that of N_2 .

The rate equation of N_2 formation in the $NO_2+O_2+C_2H_4$ system was clearly different from that in the $NO+O_2+C_2H_4$ system. This observation reveals that the reduction mechanism of NO on Cu-MFI is not the same as that of NO_2 .¹⁾ In addition, the values of γ for N_2 formation in the NO (or NO_2)+ $O_2+C_2H_4$ system were -1.0, indicating that C_2H_4 strongly adsorbs on the active site of Cu-MFI. The activation energy of CO_2 formation on Cu-MFI was found to be in the order $O_2+C_2H_4>NO+O_2+C_2H_4>NO_2+O_2+C_2H_4$. This clarifies that the oxidation of C_2H_4 on Cu-MFI is enhanced by the presence of NO_x .

With Al_2O_3 used as a catalyst, it should first be noted that the active temperature regions for all reaction systems were much higher than those on Cu-MFI. This indicates the low activity of Al_2O_3 for the oxidation of C_2H_4 or the reduction of NO_x . The rate equation of N_2 formation in the $NO+O_2+C_2H_4$ system on Al_2O_3 is described by

$$r_{\rm N_2} = k P_{\rm NO}^{1.1} P_{\rm O_2}^{0.5} P_{\rm C_2 H_4}^{0.1} \exp{(-294000/RT)}.$$
 (4)

The equation is entirely different from Eq. 1 on Cu-MFI. In addition, Eq. 4 is distinct from that of CO_2 on Al_2O_3 . It follows that the rate-determining step of N_2 formation is

different from either that of N_2 formation on Cu-MFI or that of CO_2 on Al_2O_3 . It should further be noteworthy that the order on NO for the N_2 formation in the $NO+O_2+C_2H_4$ system was the same as that on NO_2 in the $NO_2+O_2+C_2H_4$ system, which is a different phenomenon from that on Cu-MFI. The findings suggest that NO_2 would easily be formed on Al_2O_3 and the resulting NO_2 might participate in the SCR-HC. The idea is partly consistent with the suggestion of Hamada et al.⁶⁾ that the oxidation of NO to NO_2 is a key step and NO_2 can preferentially react with hydrocarbons. It should be noted, however, that there are great differences between the values of α and β for the CO_2 formation in the $NO+O_2+C_2H_4$ and the $NO_2+O_2+C_2H_4$ systems. Clearly the role of oxygen added into the $NO+C_2H_4$ mixture is not limited to the oxidation of NO to NO_2 .

Recently Vannice and co-workers have reported the following rate equation for N_2 formation in the NO+O₂+CH₄ reaction on a Sr/La₂O₃ catalyst:¹⁰⁾

$$r_{\rm N_2} = k P_{\rm NO}^{0.87} P_{\rm O_2}^{0.55} P_{\rm CH_4}^{0.26} \exp{(-109000/RT)}.$$
 (5)

The similarity in the values of α and β on the catalyst to those on Al_2O_3 (Eq. 4) might indicate that the formation of NO_2 would be the key step on both catalysts. ¹⁰⁾ The difference between the values of γ on Sr/La_2O_3 and on Al_2O_3 is probably due to the different adsorbabilities of CH_4 and C_2H_4 .

At present it is very difficult for us to propose reaction mechanisms on the basis of the above kinetic parameters because of the complex rate equations. These results, however, would be very promising data for understanding the difference between the catalyses of Cu-MFI and Al₂O₃, and useful for clarifying the reaction mechanisms.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

References

- 1) M. Iwamoto and N. Mizuno, J. Automobile Eng., 207, 23 (1993).
- 2) M. Iwamoto and H. Yahiro, *Catal. Today*, **22**, 5 (1994); H. Hamada, *Catal. Today*, **22**, 21 (1994).
- 3) S. Sato, Y. Yu-u, H. Yahiro, N. Mizuno, and M. Iwamoto, *Appl. Catal.*, **70**, L1 (1991); J. L. d'Itri and W. H. M. Sachtler, *Catal. Lett.*, **15**, 289 (1992).
- 4) C. J. Bennett, P. S. Bennett, S. E. Golunski, J. W. Hayes, and A. P. Walker, *Appl. Catal.*, **86**, L1 (1992).
 - 5) M. Iwamoto and H. Takeda, Catal. Today, 27, 71 (1996).
- 6) M. Sasaki, H. Hamada, Y. Kintaichi, and T. Ito, *Catal. Lett.*, **15**, 297 (1992); H. Hamada, Y. Kintaichi, S. Sasaki, T. Ito, and M. Tabata, *Appl. Catal.*, **64**, L1 (1991).
 - 7) J. O. Petunchi and W. K. Hall, Appl. Catal. B, 2, L17 (1994);

- G. P. Ansell, A. F. Diwell, S. E. Golunski, J. W. Hayes, R. R. Rajaram, T. J. Truex, and A. P. Walker, *Appl. Catal. B*, **2**, 81 (1993); M. Shelef, C. N. Montreuil, and H. W. Jen, *Catal. Lett.*, **26**, 277 (1994); T. Tabata, H. Ohtsuka, M. Kokitsu, and O. Okada, *Bull. Chem. Soc. Jpn.*, **68**, 1905 (1994); K. A. Bethke, C. Li, M. C. Kung, B. Yang, and H. H. Kung, *Catal. Lett.*, **31**, 287 (1995); R. H. H. Smits and Y. Iwasawa, *Appl. Catal. B*, **6**, L201 (1995); T. Beutel, B. J. Adelman, G.-D. Lei, and W. M. H. Sachtler, *Catal. Lett.*, **32**, 83 (1995); T. E. Hoost, K. A. Laframboise, and K. Otto, *Appl. Catal. B*, **7**, 79 (1995); V. A. Sadykov, S. L. Baron, V. A. Matyshak, G. M. Alikina, R. V. Bunina, A. Y. Rozovskii, V. V. Lunin, E. V. Lunina, A. N. Kharlanov, A. S. Ivanova, and S. A. Veniaminov, *Catal. Lett.*, **37**, 157 (1996).
- 8) R. Burch and P. J. Millington, *Appl. Catal. B*, **2**, 101 (1993); T. Inui, S. Iwamoto, K. Matsuba, Y. Tanaka, and T. Yoshida, *Catal. Today*, **26**, 23 (1995); B. K. Cho, *J. Catal.*, **155**, 184 (1995).
- 9) A. D. Cowan, R. Dümpelmann, and N. W. Cant, *J. Catal.*, **151**, 356 (1995); B. J. Adelman, T. Beutel, G.-D. Lei, and W. H. M. Sachtler, *J. Catal.*, **158**, 327 (1996); T. Beutel, B. Adelman, and W. M. H. Sachtler, *Catal. Lett.*, **37**, 125 (1996).
- 10) M. A. Vannice, A. B. Walters, and X. Zhang, *J. Catal.*, **159**, 119 (1996).
- 11) F. Witzel, G. A. Sill, and W. K. Hall, *J. Catal.*, **149**, 229 (1994); Y. Lie and J. N. Armor, *J. Catal.*, **150**, 388 (1994); D. B. Lukyanov, G. A. Sill, J. L. d'Itri, and W. K. Hall, *J. Catal.*, **153**, 265 (1995); J. Vassallo, E. Miró, and J. Petunchi, *Appl. Catal. B*, **7**, 65 (1995); I. Halasz, A. Brenner, M. Shelef, and K. Y. S. Ng, *J. Phys. Chem.*, **99**, 17186 (1995); M. Shelef, *Chem. Rev.*, **95**, 209 (1995); M. Inaba, Y. Kintaichi, and H. Hamada, *Catal. Lett.*, **36**, 223 (1996).
- 12) A. Obuchi, A. Ogata, K. Mizuno, A. Ohi, N. Nakamura, and H. Obuchi, *J. Chem. Soc.*, *Chem. Commun.*, **1992**, 247; G. Mabilon and D. Drand, *Catal. Today*, **17**, 285 (1993); S. Surbramanian, R. J. Kudla, W. Chun, and M. S. Chattha, *Ind. Eng. Chem. Res.*, **32**, 1805 (1993); Y. Li and J. N. Armor, *Appl. Catal. B*, **2**, 239 (1993); Y. Li, P. J. Battavio, and J. N. Armor, *J. Catal.*, **142**, 561 (1993); C. Yokoyama and M. Misono, *Bull. Chem. Soc. Jpn.*, **67**, 557 (1994); X. Zhang, A. B. Walters, and M. A. Vannice, *Appl. Catal. B*, **4**, 273 (1994); B. Coq, D. Tachon, F. Figuéras, G. Mabilon, and M. Prigent, *Appl. Catal. B*, **6**, 271 (1995); A. D. Cowan, R. Dümpelmann, and N. W. Cant, *J. Catal.*, **151**, 356 (1995).
- 13) Y. Li and W. K. Hall, J. Phys. Chem., 94, 6145 (1990).
- 14) F. Radtke, R. A. Koeppel, and A. Baiker, *Appl. Catal. A.*, **107**, L125 (1994); F. Radtke, R. A. Koeppel, and A. Baiker, *J. Chem. Soc.*, *Chem. Commun.*, **1995**, 427; F. Radtke, R. A. Koeppel, and A. Baiker, *Catal. Lett.*, **28**, 131 (1994); C. Yokoyama and M. Misono, *J. Catal.*, **150**, 9 (1994).
- 15) M. L. Unland, *J. Phys. Chem.*, **77**, 1952 (1973); Y. Ukisu, S. Sato, G. Muramatu, and K. Yoshida, *Catal. Lett.*, **11**, 177 (1991); G. R. Bamwenda, A. Obuchi, A. Ogata, and K. Mizuno, *Chem. Lett.*, **1994**, 2109; C. Li, K. A. Bathke, H. H. Kung, and M. C. Kung, *J. Chem. Soc.*, *Chem. Commun.*, **1995**, 813; G. R. Bamwenda, A. Ogata, A. Obuchi, J. Oi, K. Mizuno, and J. Skrzypek, *Appl. Catal. B*, **6**, 311 (1995); H. Takeda and M. Iwamoto, *Catal. Lett.*, **38**, 21 (1996).
- 16) Y. Li and W. K. Hall, J. Catal., 129, 202 (1991).
- 17) Y. Li and J. N. Armor, Appl. Catal. B, 1, L21 (1992).